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Abstract
A variational procedure is developed to study the properties of the bipolaron in
the Fröhlich model including explicitly the electron band structure and taking
into account the long-range repulsive electron–electron interaction. Adopting
two different ansatz for the longitudinal optical phonon distribution function,
the large-bipolaron and small-bipolaron limits are obtained. The evolution
of the bipolaron ground state as a function of the electron–phonon coupling
constant and of the bare-electronic bandwidth is discussed and the bipolaron
phase diagram is presented. A clear crossover from the large-bipolaron to the
small-bipolaron regime takes place.

1. Introduction

In the last few years infrared spectroscopy and transport measurements have indicated the
presence of polaronic carriers in cuprates and manganites [1]. From a theoretical point of view,
the Fröhlich [2] and Holstein [3] polaron models have been used to describe the electron–
phonon interaction. In both models perturbative methods provide a correct description of
the regimes of large and small electron–phonon coupling constants, but they fail in the
intermediate region, which is the most interesting in these materials. The Feynman path-
integral technique [4] overcomes this difficulty in the Fröhlich case. Within this model,
relaxing the effective-mass approximation, it has been shown that it is possible to go from
a large- to a small-polaron solution for intermediate values of the electron–phonon coupling
constant [5–8]. In the Holstein model the regime characterized by intermediate couplings
and electronic and phononic energy scales that are not well separated has been analysed
using quantum Monte Carlo simulations [9, 10], numerical exact diagonalizations for small
clusters [11,12], dynamical mean-field theory [13], the global local variational model [14] and
the density matrix renormalization group [15]. In the crossover region a linear superposition of
states representing the small- and large-polaron wave functions also provides a very accurate
description of the polaron features [16, 17]. It turns out that in both models the ground-state
energy and the effective mass are continuous functions of the electron–phonon coupling.

Another important subject in condensed-matter physics is the pairing of electrons or
holes in real space that has been experimentally observed in many physical systems, such as
transition metal oxides [18–20], superconducting materials [21,22], conjugated polymers [23]
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and alternating-valence compounds [24]. In some cases the bipolaron formation is considered
the main mechanism [19, 20, 22] of the coupling. The bipolaron has been the subject of
numerous studies stimulated also by the discovery of high-Tc cuprates and the belief that the
interplay between electron–electron and electron–phonon interactions plays an important role
in these materials [25]. Indeed, several authors have proposed a Bose–Einstein bipolaron
condensation below Tc, either occurring directly [26] or with the cooperation of fermionic
charges [27, 28].

Theoretically the bipolaron formation has been treated in the Fröhlich and Holstein
schemes. In the first case the long-range repulsive Coulomb interaction is taken into account
[29–36] and it was found that the bipolaron forms only if the Fröhlich electron–phonon coupling
constant α is larger than a critical αc and the ratio η between the high-frequency and static
dielectric constants is sufficiently small. Such a value has been estimated to be αc � 6.8 [32]
or αc � 6 [33] depending on the approximations used. For any fixed α, there is a value ηc
such that for η > ηc the two charge carriers cannot bind. For α very large, ηc = 0.14 [37].

In the Holstein–Hubbard model the bipolaron formation has also been faced [38–41]. Two
different regimes for the bipolaron ground state have been found when the electron–phonon
coupling constant increases: a neighbouring-site bipolaron in the intermediate-coupling regime
and an on-site bipolaron in the strong-coupling limit [42]. The properties of the intersite
bipolaron have also been investigated by variational and exact-diagonalization methods and
by combining density matrix and Lanczos algorithms [43–46]. The influence of the Hubbard
interactionU on the bipolaron formation and the transition between the two bipolaronic regimes
are still not completely understood.

In this paper we take into account the long-range repulsive electron–electron interaction
and we study, by a variational procedure, the bipolaron formation in the Fröhlich model beyond
the effective-mass approximation, i.e. the electron band structure is explicitly considered
and the Fröhlich coupling is used to describe the electron–phonon matrix element. The bi-
polaron formation is studied mainly in the weak- and strong-coupling regimes (large and small
bipolarons) by evaluating both the bipolaron ground-state and binding energies and the average
distance between the two interacting electrons. In particular the binding energy is calculated
by comparing the bipolaron ground-state energy with that of two free polarons [6] obtained
when the relative distance between the charge carriers becomes infinite. We stress that the
variational procedure adopted in this paper is similar to that implemented in reference [6] for
the single-polaron problem.

For weak electron–phonon coupling constant, by exploiting the distinctive characteristic
of this regime, i.e. the slow variation of the main quantities in the unit cell of the crystal, we
will determine, for different values of η and the ratio between the bandwidth � and the phonon
energy h̄ω, the critical values of α (αc) defining the transition from two free large polarons to
a large bipolaron. We find that the values of αc increase with � and the binding energy is a
decreasing function of η. Another interesting result is that, due to the interaction with phonons,
the recoil energy of the electron pair plays an important role in the large-bipolaron formation
that turns out to be less restrictive in comparison with the mere Fröhlich bipolaron: indeed,
for a given finite bandwidth, αc is smaller than the value calculated within the effective-mass
approximation. In the regime of strong electron–phonon coupling, when the small-bipolaron
formation takes place, we find that the electrons localize at a relative distance comparable to the
lattice parameter of the crystal. Finally the crossover between the small- and large-bipolaron
solutions occurs. The values of α where the transition occurs will be indicated in the following
by α

bip
c .
In sections 2 and 3 the model and the variational procedure are presented; in section 4 the

results are discussed.



Crossover from large to small bipolarons 1501

2. The model

The Hamiltonian for two electrons (or two holes) in a periodic potential interacting with the
longitudinal optical phonons and with each other through the Coulomb force can be given by

H = Eb(−i �∇�r1) + Eb(−i �∇�r2) +
e2

ε∞r
+

∑
�q
h̄ωa

†
�qa�q +

∑
�q

[
Vqa�q(ei�q·�r1 + ei�q·�r2) + h.c.

]
(1)

where �r1 and �r2 indicate the positions of the two electrons, �∇�r1 and �∇�r2 the relative gradient
operators, �r = �r1 − �r2 the relative distance, ε∞ the high-frequency dielectric constant, ω the
longitudinal optical phonon frequency, Vq the strength of the electron–phonon interaction, a�q
(a†

�q) the phonon annihilation (creation) operator and Eb(−i �∇�r1) and Eb(−i �∇�r2) the operators

obtained with the substitution in the bare-electronic bandEb(�k) for the crystalline momentum �k
with −i �∇�r1 and −i �∇�r2 respectively. In equation (1) the Umklapp terms in the electron–phonon
and electron–electron interactions have been neglected and Vq is the Fröhlich interaction

Vq = i
h̄ω

q

(
4πα

V

)1/2

R1/2
p

where V is the volume of the system, α is a dimensionless parameter measuring the strength
of the electron–phonon interaction and Rp is the polaron radius (Rp = √

h̄/(2mω) with m

denoting the effective mass of Eb(�k) at �k = 0). In appendix I we show the limits of validity
of equation (1). Introducing the centre-of-mass coordinates of the pair �Rc and the relative
coordinates �r , the Hamiltonian becomes

H = Eb

(
− i

2
�∇ �Rc

− i �∇�r

)
+ Eb

(
− i

2
�∇ �Rc

+ i �∇�r

)
+

e2

ε∞r
+

∑
�q
h̄ωa

†
�qa�q

+
∑

�q

[
Vqa�qei�q· �Rcρ�q(�r) + h.c.

]
(2)

with

ρ�q(�r) = ei�q·�r/2 + e−i�q·�r/2.

3. Variational procedure

It is well known that in the Fröhlich model [2], within the effective-mass and continuum
approximations, the variational approach proposed by Lee, Low and Pines [47] provides a
good description only in the weak-coupling regime. Some of us [6] have shown that, relaxing
the previous approximations and taking into account the electron band structure, a phonon
wave function represented by a coherent state and similar in form to that used by Lee, Low and
Pines [47] is able to provide a correct description of the polaron features both in the weak- and
the strong-coupling regimes. For these reasons we adopt a variational procedure based on a
bipolaron wave function which reduces to that of two free polarons described in reference [6]
when the relative distance between the two interacting electrons becomes infinite. In appendix I
we propose the following trial wave function for the bipolaron problem

|ψ �Q〉 = 1√
V

ei �Q· �Rc exp

(∑
�q
(f�q(�r)ei�q· �Rca�q − f ∗

�q (�r)e−i�q· �Rca
†
�q)

)
ϕ(�r)|0〉 (3)

where �Q is the total crystalline momentum, f�q(�r) denotes the distribution function of the
phonons, ϕ(�r) represents the relative wave function of the two electrons and |0〉 indicates
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the phonon vacuum state. We will study the solutions in the singlet state, so the trial wave
function (3) has to be even under the exchange of the spatial coordinates of the two electrons
(or equivalently under the transformation �r → −�r). Clearly the calculations can be performed
for a triplet state too. We stress that the phonon distribution function depends on the relative
coordinate of the two interacting charge carriers, so the wave function (3) contains, on average,
the retardation effects of the electron–electron interaction mediated by the exchange of the
longitudinal optical phonons.

The expectation value of the Hamiltonian (1) reads

E( �Q) = 〈ψ �Q|H |ψ �Q〉 =
∑
n

Enei �Q· �Rn/2
∫

d�r ϕ(�r)ϕ(�r + �Rn)e
−σ1n(�r)

+
∑
n

Enei �Q· �Rn/2
∫

d�r ϕ(�r)ϕ(�r + �Rn)e
−σ2n(�r) +

∑
�q
h̄ω

∫
d�r ϕ2(�r)|f�q(�r)|2

+ 〈ϕ| e2

ε∞r
|ϕ〉 −

∑
�q

[
Vq

∫
d�r ϕ(�r)2f ∗

�q (�r)(ei�q·�r/2 + e−i�q·�r/2) + c.c.

]
(4)

where

σ1n(�r) = 1

2

∑
�q

[
|f�q(�r)|2 + |f�q(�r + �Rn)|2 − 2f�q(�r)f ∗

�q (�r + �Rn)e
−i�q· �Rn/2

]
(5)

and

σ2n(�r) = 1

2

∑
�q

[
|f�q(�r)|2 + |f�q(�r + �Rn)|2 − 2f ∗

�q (�r)f�q(�r + �Rn)e
−i�q· �Rn/2

]
. (6)

In the following the numerical calculations will be performed by assuming that the bare-
electron band Ef ( �Q) has cubic symmetry and by retaining only the nearest-neighbouring
coefficients En so that the bare band structure acquires the characteristic form of the tight-
binding approximation:

Eb( �Q) = E0 + 2E1
[
cos(Qxa) + cos(Qya) + cos(Qza)

]
. (7)

We consider a suitable form of the relative wave function ϕ(�r):
ϕ(�r) = Nrβe−γ r (8)

with β and γ variational parameters and N the normalization coefficient

N = 1

(4π)1/2

[
(2γ )2β+3

*(2β + 3)

]1/2

.

Here *(x) indicates the gamma function. This relative wave function has already been used to
calculate the large-bipolaron binding energy in the continuum approximation for the ground
state and a class of excited states [33]. It takes into account the fact that because of the strong
Coulomb interaction the electrons repel at small distance and the probability of being at the
same point is zero. Since ϕ(�r) has spherical symmetry, we find that σ1n(�r) = σn(�r) = σ2n(−�r)
and the expression for the energy (4) is simplified.

The functional derivative of the energy E( �Q) with respect to f�q(�r) provides the following
expression for the phonon distribution function f�q(�r):

f�q(�r) = Vqρ�q(�r)ϕ2(r)

ϕ2(r)h̄ω + 2ε( �Q, �q, �r) − ε1( �Q, �r) − ε2( �Q, �r) (9)
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where

ε( �Q, �q, �r) =
∑
n

Ene(i/2) �Rn·( �Q−�q)ϕ(r)ϕ(�r − �Rn)e
−σ ∗

−n(�r)f�q(�r − �Rn)

ε1( �Q, �r) =
∑
n

Ene(i/2) �Rn· �Qϕ(r)ϕ(�r + �Rn)e
−σn(�r)

and

ε2( �Q, �r) =
∑
n

E−ne−(i/2) �Rn· �Qϕ(r)ϕ(�r − �Rn)e
−σ ∗

−n(�r).

We acknowledge the presence of a recoil term in f�q(�r), even though this makes the
consideration more complex than in the polaron case [6]. Equation (9) is very complicated, so
we adopt two approximations able to take into account different physical descriptions of the
problem emphasizing the large- and small-bipolaron limits.

3.1. Small-bipolaron limit

We assume that the phonon distribution function f�q(�r) depends on the relative distance �r
between the electrons only through the relation

f�q(�r) = C�qρ�q(�r) = C�q(ei�q·�r/2 + e−i�q·�r/2) (10)

where C�q is a function to be determined variationally. In the above form of f�q(�r), C�q is
independent of �r and, although only in averaged form, contains all the effects due to the recoil
energy. Indeed we have exploited the feature that in this regime the phonon contribution to the
energy depends only on the average electronic configuration. The phonon distribution function
has the right property of exchange between the spatial coordinates of two electrons in a singlet
state. We obtain

E( �Q) = 2
∑
n

Enei �Q· �Rn/2e−σnSn(γ, β) +
2αRp

1 − η
h̄ω

γ

β + 1

+ 2
∑

�q
h̄ω|C�q |2(1 + h(�q)) − 2

∑
�q

[
VqC

∗
�q (1 + h(�q))ρ�q(�r) + c.c.

]
(11)

where

σn =
∑

�q
|C�q |2(1 − e−i�q· �Rn)

h(�q) = 4πN2

q

*(2β + 2)

(4γ 2 + q2)
sin

[
(2β + 2) arctan

(
q

2γ

)]
and

Sn(γ, β) =
∫

d�r ϕ1(�r)ϕ2(�r + �Rn)

with

ϕ1(�r) = ϕ(�r) exp

(
i
∑

�q
|C�q |2 sin(�q · �r)

)

and

ϕ2(�r + �Rn) = ϕ(�r + �Rn) exp

(
−i

∑
�q

|C�q |2 sin[�q · (�r + �Rn)]

)
.
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From equation (11) it is simple to obtain the Euler equation ∂E/∂C∗
�q = 0; thus,

C�q = Vq(1 + h(�q))
A(�q) (12)

where

A(�q) = h̄ω(1 + h(�q)) + 2
[
ε̄( �Q − 2�q) − ε̄( �Q)

]
with

ε ( �Q) =
∑
n

Enei �Q· �Rn/2e−σnSn(γ, β).

Substituting equation (12) in (11), the lowest value of the energy is

E( �Q) = 2E0 +
2αRp

1 − η
h̄ω

γ

β + 1

+ 4E1e−σ S(γ, β)

[
cos

(
Qxa

2

)
+ cos

(
Qya

2

)
+ cos

(
Qza

2

)]

+ 2
∑

�q

|Vq |2(1 + h(�q))3

A2
− 4

∑
�q

|Vq |2(1 + h(�q))2

A
(13)

where

σ =
∑

�q

|Vq |2(1 + h(�q))2

A2
(1 − cos(qza)) (14)

S(γ, β) =
∫

d�r ϕ(r)ϕ(|�r + �a|)

and �a = (0, 0, a). We notice that the value of σ has to be calculated self-consistently through
equation (14).

The numerical calculations show that: (a) there is a region where 0 < α < 1.33 and
0 < � < 5.4 in which the small bipolaron cannot form; (b) in this region the total energy is
minimized for β = γ = 0, i.e. it is coincident with twice that of two free small polarons; (c)
outside this region, the values of β and γ minimizing the energy (13) are found only when
γ � bz, where bz is the radius of the Brillouin zone. The consequences of this fact can be
understood analytically.

In the aforesaid limit γ � bz, we have

h(�q) � γ

(β + 1)q
sin

(
β + 1

γ
q

)
(15)

S(γ, β) � 0 (16)

and therefore

C�q = Cq = Vq

h̄ω
(17)

showing that the effects due to the correlation introduced by the electron recoil are negligible
in this regime. Then the self-energy becomes

E( �Q = 0) = 2E0 − 2
∑

�q

|Vq |2
h̄ω

+
2αRp

1 − η
h̄ω

γ

β + 1
− 2

∑
�q

|Vq |2
h̄ω

h(�q) = 2Ep + Eb. (18)

The first two terms to the right-hand side of (18) give twice the polaron self-energy 2Ep in
the small-polaron limit. The sum of the third and the fourth terms, Eb, is the energy due to the
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electronic repulsion and to the phonon field when the electrons are in the relative wave function
ϕ(r). Eb is the binding energy of the bipolaron and is a function of the ratio γ /(β + 1):

Eb = 2αRp

γ

β + 1

[
1

1 − η
− 2

π
Si

(
β + 1

γ
bz

)]
(19)

where Si(x) is the sine integral. The highest bipolaron binding energy, found when η = 0, is

Em = −0.45α
Rp

a
h̄ω.

We observe that the above procedure does not allow us to calculate the values of β and γ

separately; only the ratio (β + 1)/γ = 0.75a is fixed. The radial probability distribution

g(r) = 4πN2 (2γ )2β+3

*(2β + 3)
r2β+2e−2γ r

is peaked around the position 0.75a. On increasing γ (and consequently β), this function
becomes more localized.

We tried to understand this fact more deeply, adopting the same procedure but assuming
as the relative wave function

ϕ(r) = Ne−χ2(r−r0)
2/2

where N is the normalization coefficient, χ and r0 are variational parameters. The results
of the new calculation are: (a) the energy is minimized for r0 = 0.73a; (b) the energy is a
decreasing function of χ which tends to the asymptotic limit χ → ∞. Therefore the relative
function approximates to a δ-function localized at r0 = 0.73a.

The same occurs using the former function

ϕ(�r) = Nrβe−γ r .

However, in this case the theory allows one to find only the distance of the largest probability
of the presence of the electrons, and not the quantities γ and β independently. Furthermore
the energies calculated through the two trial wave functions differ by a few per cent. This
indicates that the results are nearly independent of the relative wave function adopted. Since in
the Fröhlich large-bipolaron formation the wave function (8) was employed, for consistency it
is reasonable to use the same form of relative function for the large- and small-bipolaron limits.
We conclude that: (a) the small bipolaron cannot form in the region where 0 < α < 1.33 and
0 < � < 5.4; (b) outside this region the highest value of η for which the bipolaron can form
is η = 0.14; (c) the binding energy increases linearly with α for fixed polaron radius Rp.

3.2. Large-bipolaron limit

To obtain the large-bipolaron limit, we observe that in the expression for the energy (4) there
are terms of the type

∫
d�r ϕ(r)F (�r + �Rn), where F(�r + �Rn) is

F(�r + �Rn) = ϕ(�r + �Rn)e
−σn(�r).

The attempt now is to consider F(�r + �Rn) as a slowly varying function of �Rn and expand it to
the second order. In this way we assume implicitly that ϕ(r) and f�q(�r) are slowly varying on
the unit cell of the crystal, but we preserve the condition that the electronic band has a finite
width. One could note that this behaviour of ϕ(�r) and f�q(�r) implies that the Fourier transform
is different from zero only around the centre of the Brillouin zone. Consequently even if we
do not expand the band energy around �Q = 0, the results should be coincident with those
obtained within the effective-mass approximation. We will find that this does not occur. Thus
it will be clear that the two approximations are independent. The physical reason for this is



1506 G Iadonisi et al

the following: taking the bandwidth finite, we prevent the kinetic energy from becoming very
large. In appendix II it is shown that, after a very lengthy but straightforward calculation, we
obtain for the energy

E = 2E0 + 2
∫

d�r ϕ(r)2Ẽ

( �Q
2
, �r

)
+ a2

∫
d�r Ẽ

( �Q
2
, �r

)
ϕ(r)∇2ϕ(r)

+
∑

�q
h̄ω

∫
d�r ϕ(r)2|f�q(�r)|2 −

∑
�q

[
Vq

∫
d�r ϕ(r)2f ∗

�q (�r)ρ�q(�r) + c.c.

]

+ a2
∫

d�r Ẽ
( �Q

2
, �r

)
f ∗

�q (�r)( �∇ϕ2 · �∇f�q(�r) + ϕ2 ∇2f�q(�r))

−
[

2

i

∑
�q

∫
dr �∇ϕ2 · �∇

{
�E

( �Q
2
, �q, r

)}
− c.c.

]
|f�q(�r)|2

− a2
∑

�q

∫
d�r �E

( �Q
2
, �q, r

)
|f�q(�r)|2(( �∇ϕ)2 + ϕ(r)∇2ϕ(r))

+ a2
∑

�q

∫
d�r �E

( �Q
2
, �q, �r

)
f ∗

�q (�r)( �∇ϕ2 · �∇f�q(�r) + ϕ2 ∇2f�q(�r))

+
a2

2

∑
�q

∫
d�r �E

( �Q
2
, �q, �r

)
|f�q(�r)|2 ∇2ϕ2 + 〈ϕ|e

2

r
|ϕ〉 (20)

where

�E

( �Q
2
, �q, �r

)
= Ẽ

( �Q
2

− �q, �r
)

− Ẽ

( �Q
2
, �r

)

Ẽ

( �Q
2
, �r

)
=

∑
n �=0

Enei �Q· �Rn/2e−δn(�r)

and

δn(�r) =
∑

�q
|f�q(�r)|2(1 − e−i�q· �Rn/2).

In all of the above equations the bare-electronic band of (7) has been explicitly considered.
The Euler equation δE/δf ∗

�q (�r) = 0 gives

a2Ẽ

( �Q
2

− �q, �r
)

∇2f�q(�r) + a2Ẽ

( �Q
2

− �q, �r
) �∇ϕ2

ϕ2
· �∇f�q(�r)

+

[
2�E

( �Q
2
, �q, r

)
+ h̄ω + a2 �E

( �Q
2
, �q, r

)
ϕ ∇2ϕ

ϕ2

]
f�q(�r)

= Vq(e
i�q·�r/2 + e−i�q·�r/2). (21)

This is a very complicated non-linear equation, because f�q(�r) appears in non-linear form in
Ẽ( �Q/2 − �q, �r) and �E( �Q/2, �q, �r), which also depend explicitly on �r . The main approx-
imation is now to replace |f�q(�r)|2 in δn(�r) and ϕ ∇2ϕ/ϕ2 with their average value for the state
ϕ(r). Therefore the polarization effects are taken into account through quantities depending
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on the average relative position of the electron pair. Equation (21) becomes then

a2Ẽ

( �Q
2

− �q
)

∇2f�q(�r) + a2Ẽ

( �Q
2

− �q
) �∇ϕ2

ϕ2
· �∇f�q(�r)

+

[
2�E

( �Q
2
, �q

)
+ h̄ω − a2 �E

( �Q
2
, �q

)
γ 2

2β + 1

]
f�q(�r)

= Vq(e
i�q·�r/2 + e−i�q·�r/2) (22)

where

Ẽ( �Q) =
∑
n�=0

Enei �Q· �Rne−δn

δn =
∑

�q
〈ϕ|f�q(�r)|2ϕ〉(1 − e−i�q· �Rn/2) (23)

�E

( �Q
2
, �q

)
= Ẽ

( �Q
2

− �q
)

− Ẽ

( �Q
2

)
.

An equation formally similar to (22) was obtained in the theory of the large-bipolaron formation
in the effective-mass approximation [33]. In that case the solution of the equivalent of
equation (22) was exactly written as a series containing both confluent hypergeometrical
functions and spherical harmonics. The physical meaning of this result is that the phonon
distribution function f�q(�r) does not have spherical symmetry, as it must occur for the presence
of the two electrons. It was found that when the bipolaron radius (β + 1)/γ is much larger
than the polaron radius Rp, f�q(�r) has a simple asymptotic form and the energy becomes that
of two independent Fröhlich polarons. The same mathematical procedure can be applied to
equation (22), producing for the asymptotic distribution function

f�q(�r) = − Vq

M�q
(ei�q·�r/2 + e−i�q·�r/2) = − Vq

M�q
ρ�q(�r) (24)

where

M�q = h̄ω − a2Ẽ

( �Q
2

− �q
)(

γ 2 +
q2

4

)
+ �E

( �Q
2
, �q

)(
2 − γ 2a2

2β + 1

)
(25)

is always positive if 2 − γ 2a2/(2β + 1) > 0. We stress that even in this simple case the
calculation of f�q(�r) must be done in a self-consistent way, because the phonon distribution
function enters M�q through δn. Once this has been done, equation (20) allows one to calculate
the energy of two separated large polarons in a band with finite width. In this limit we do not
take into account the distortion of f�q(�r) due to the presence of the second electron. When the
two electrons are at finite relative distance, we should follow the same procedure as is used in
reference [33] to calculate f�q(�r). Now this is very difficult to do; we simplify the calculation,
considering only the first angular term [48], so we adopt as the trial phonon distribution function
the following:

f�q(�r) = − Vq

M�q
(ei�q·�r/2 + e−i�q·�r/2)(p1 + p2(q̂ · r̂)2) (26)

wherep1 andp2 are variational parameters and q̂ and r̂ the unit vectors in the directions of �q and
�r respectively. It is necessary to use (q̂ · r̂)2 to be sure that the wave function (3) is even for the
exchange of the spatial coordinates of the two electrons. Using the above expression of f�q(�r),
the energy (20) is calculated numerically taking into account the self-consistent condition (23).
The energy is finally minimized with respect to the parameters p1, p2, γ and β. The explicit
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calculations are performed for �Q = 0. Considering the simple cubic bare band (7) and taking
into account that the relative wave function ϕ(r) has spherical symmetry, the coefficients δn
reduce to a unique complex number δ = w + is whose real and imaginary parts are given by
the implicit coupled equations

w =
∑

�q

∫
d�r |f�q(�r)|2ϕ2(r)

[
1 − cos

(
qza

2

)]

s =
∑

�q

∫
d�r |f�q(�r)|2ϕ2(r) sin

(
qza

2

) (27)

because f�q(�r) depends on w and s through M�q . At Q � 0, we find exactly s = 0.

4. Discussion of results and conclusions

We have calculated numerically the self-energy E(Q = 0) for the small and large bipolarons
as a function of the bandwidth � and of the electron–phonon coupling constant α. The results
for � = 20 (in units of h̄ω) are shown in figure 1 together with twice the polaron self-energy
E2pol obtained in reference [6] (conditions: γ = β = 0; El

2pol is the energy of two polarons
in the large-polaron limit and Es

2pol is that in the small-polaron limit). As in the polaron
case, we stress the appearance of two regimes, the large-bipolaron and small-bipolaron ones.
The quantity α

bip
c (αpol

c ) indicates the crossover from large to small bipolarons (polarons).
The large-bipolaron solution denoted by El describes the ground state for weak coupling, the
small-bipolaron solution denoted by Es that for strong coupling. The crossover between the
two regimes is sharp and becomes more apparent with increasing �. Furthermore we remark
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∆=20

α
Figure 1. The bipolaron self-energy E(Q = 0) for small and large bipolarons as a function of
the electron–phonon coupling constant α for � = 20 and η = 0. El and Es (solid lines) denote
the large- and small-bipolaron solutions respectively. El

2pol (dotted line) gives twice the large-
polaron self-energy and Es

2pol (dotted line) twice the small-polaron self-energy as calculated in
reference [6]. The energies are given in units of h̄ω.
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that the αbip
c -values are little smaller than αpol

c -values. We observe, however, that for α smaller
than 1.5, the large bipolaron does not form, so the two charge carriers behave as two free large
polarons.

In figure 2 we show the phase diagram for the bipolaron in the plane (α,�). There are
four regions with different features of the bipolaron or polaron states. The modifications of the
states between two confining regions occur sharply. The main conclusions are the following.

(a) In region I, the lowest energy is that of two free large polarons.
(b) In region II, between the curves αc and αbip

c , the large bipolaron is the stable phase. When
� increases, αc and the self-energy approach the values calculated in the effective-mass
approximation [33], whereas αbip

c increases indefinitely. Therefore for � very large, the
large bipolaron is the prominent phase.

(c) In region III, below the curve αbip
c , the small bipolaron has the lowest energy. In the limit

� � h̄ω the transition to the small-bipolaron state occurs as long as the electron–phonon
coupling is very strong.

(d) In region IV ( 0 < α < 1.33 and 0 < � < 5.4 h̄ω), the small bipolaron cannot form,
because the total energy is equal to twice that of two free small polarons.

0,0 0,5 1,0 1,5 2,0 2,5 3,0 3,5 4,0 4,5 5,0 5,5 6,0 6,5 7,0
0

10

20

30

40

50

60

70

∆

IV

ΙΙΙ

ΙΙ

Ι

η=0
polarons
Two small
 

Two large polarons

α
c

Small bipolaron 

Large bipolaron

α
c

bip

α
Figure 2. The bipolaron phase diagram for η = 0. In the plane (α,�) four stable regions are
indicated: I: the region of two large polarons; II: the region of the large bipolaron; III: the region of
the small bipolaron; IV: the region of two small polarons. The quantity αc (solid line) defines the
transition from two free large polarons to a large bipolaron; αbipc (solid line) indicates the crossover
from the large to the small bipolaron. � is given in units of h̄ω.

Clearly, in regions I and IV the Coulomb interaction overcomes the attractive forces
mediated by the electron–phonon interaction and the exchange effects. We stress, however,
the fact that the formation of a large bipolaron from two free large polarons is less restrictive
compared with the mere Fröhlich bipolaron. Indeed, for � = 20 h̄ω, the quantity αc is only
1.5, smaller than the value obtained in reference [33]. Therefore, for fixed �, on increasing
α two free large polarons bind to form the large bipolaron; moreover the large-bipolaron state
evolves as a function of the coupling constant, undergoing a clear transition to the small-
bipolaron state. From the comparison with the results of reference [6], it is apparent that the
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transition from the large- to the small-bipolaron regime occurs for nearly the same parameter
values of the polaron crossover.

We notice that in region II the bipolaron radius is always larger than the lattice constant
a and in region III it is of the order of the quantity a independently of the coupling constant.
These results confirm the nature of the bipolaron solutions and the formation of an intersite
small bipolaron.

Finally, in figure 3 we show the behaviour of the binding energy as a function of η for
different values of �. On increasing �, the binding energy and ηc decrease, getting near the
values estimated in the continuum approximation.
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∆=40

Ebin

∆=20

∆=10

∆=2

Figure 3. The bipolaron binding energy Ebin (in units of e2/ε∞a) as a function of η for different
values of � (in units of h̄ω). The definition of the quantity α has been used [2].

We stress the fact that the crossover between large and small bipolarons can have interesting
consequences for different materials. Indeed there are experimental results [19, 20, 22]
consistent with the presence of bipolarons in WO3−x , in manganites and in Ba0.69K0.31BiO3.
Recent experimental data support the crossover between large and small polarons in manganites
(phase transition and optical properties) [1]. Therefore we believe that the bipolaron formation
and the crossover between large and small bipolarons can play an important role in the physics
even of manganites and cuprates.

We point out that the Fröhlich interaction is not an essential requirement because the
proposed approach can be extended to different expressions for the electron–phonon matrix
element. However, the comparison of our results with those obtained in the Holstein–Hubbard
model [43, 44, 46] is not easy because we have taken into account a long-range electron–
electron interaction.

In conclusion, by means of a variational procedure we have investigated the properties
of the Fröhlich bipolaron, relaxing the effective-mass approximation and taking into account
the long-range electron–electron repulsive interaction. The evolution of the bipolaron ground
state as a function of the electron–phonon coupling constant α and of the width � of the
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bare-electronic band has been discussed and the bipolaron phase diagram has been presented.
In the proposed approach a clear transition from the large-bipolaron to the small-bipolaron
regime takes place. As in the polaron case [16, 17], a variational linear superposition of the
large-bipolaron and the small-bipolaron solutions provides better estimates of the bipolaron
ground-state and binding energies just in the crossover regime, since for intermediate values
of the electron–phonon coupling constant the two wave functions are not orthogonal and the
off-diagonal matrix elements of the Hamiltonian (1) are different from zero. Work in this
direction is in progress and the results will be discussed elsewhere.

Appendix I

The most general Hamiltonian of two electrons (or two holes) in a periodic potential interacting
with the longitudinal optical phonons and with each other through the Coulomb force is given
by [6, 49]

Hgen = p2
1

2m
+ V (�r1) +

p2
2

2m
+ V (�r2) +

e2

ε∞r
+

∑
�q
h̄ωa

†
�qa�q

+
∑

�q

[
Wq(�r1)a�qei�q·�r1 + h.c.

]
+

∑
�q

[
Wq(�r2)a�qei�q·�r2 + h.c.

]
(AI.1)

where �r1 and �r2 indicate the positions of the two electrons, �p1 and �p2 denote the momenta
of the two charges, V (�r) is the single-particle potential periodic on the Bravais lattice,
�r = �r1 − �r2 the relative distance, ε∞ the high-frequency dielectric constant, ω the longitudinal
optical phonon frequency, Wq(�r) the lattice-periodic general form of the electron–phonon
coupling, a�q (a†

�q ) the phonon annihilation (creation) operator. The quantity Wq(�r) can be
expanded as

Wq(�r) =
∑

�G
Vq( �G)ei �G·�r

where �G is a vector of the reciprocal lattice. In the polaron and bipolaron problem it is
commonly assumed that only Vq( �G = 0) = Vq is different from zero, which means that the
electron–phonon interaction is considered slowly varying in the unit cell and accordingly the
Umklapp processes are neglected. The Hamiltonian is invariant under translations by Bravais
lattice vectors, so it can be proved [49] that the eigenvalue problem admits generalized Bloch
eigenfunctions:

|f �Q〉 = ei �Q· �RcU [�r1, �r2, (a�q, a
†
�q)]|0〉

where �Rc denotes the centre-of-mass coordinate, (a�q, a
†
�q) the set of phonon annihilation and

creation operators and U is an operator function satisfying the equation

U [�r1 + �a, �r2 + �a, (a�qe−i�q·�a, a†
�qei�q·�a)] = U [�r1, �r2, (a�q, a

†
�q)]

for any Bravais lattice vector �a. We stress that the wave function depends on a wave vector �Q
and it can be written as [50]

|f �Q〉 =
∑
n1,n2

|ψ �Q( �Rn1 ,
�Rn2)〉a(�r1 − �Rn1)a(�r2 − �Rn2) (AI.2)

where a(�r− �Rn) is a Wannier function and |ψ �Q( �Rn1 ,
�Rn2)〉 is a function that under a translation

by any Bravais lattice vector �a is multiplied by the factor ei �Q·�a . Exploiting the slow variation
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of the electron–phonon interaction on the unit cell and taking only the direct term in the
electron–electron interaction [51], we adopt the standard procedure of reference [50] to give
an eigenvalue equation for |ψ �Q( �Rn1 ,

�Rn2)〉. The new Hamiltonian operator is

H =
∑
m1

Em1 e−( �Rm1 · �∇) +
∑
m2

Em2 e−( �Rm2 · �∇) +
e2

ε∞r
+

∑
�q
h̄ωa

†
�qa�q

+
∑

�q

[
Vqa�q(ei�q· �Rn1 + ei�q· �Rn2 ) + h.c.

]
. (AI.3)

In the above equation the bare-electron band has been taken as

Eb(�k) =
∑
n

Enei�k· �Rn .

Since a phonon wave function represented by a coherent state provides a correct description
of the polaron features [6, 17] and the particles are constantly scattered by each other through
their direct interaction [49], our variational approach for the two-polaron problem can be set
up adopting the trial wave function

|ψ �Q( �Rn1 ,
�Rn2)〉 =

∑
k

exp

(
i �Q ·

( �Rn1 + �Rn2

2

))
exp

(
−i

( �k
2

)
· ( �Rn1 − �Rn2)

)

× ϕ(k) exp

(∑
�q

[
f�q( �Rn1 − �Rn2)a�q exp

(
i�q ·

( �Rn1 + �Rn2

2

))
− h.c.

])
|0〉

(AI.4)

where �Q is the total crystalline momentum, �k is the relative momentum of the two particles,
f�q denotes the variational distribution function of the phonons, ϕ(k) takes into account the
mutual scattering of the particles and |0〉 indicates the phonon vacuum state.

Provided that the interaction part of the Hamiltonian varies slowly with position, we can
change our discrete variables to continuous variables, obtaining the Hamiltonian

H = Eb(−i �∇�r1) + Eb(−i �∇�r2) +
e2

ε∞r
+

∑
�q
h̄ωa

†
�qa�q +

∑
�q

[
Vqa�q(ei�q·�r1 + ei�q·�r2) + h.c.

]
(AI.5)

where �∇�r1 and �∇�r2 are the gradient operators and Eb(−i �∇�r1) and Eb(−i �∇�r2) are the operators
obtained with the substitution in the bare-electronic band Eb( �k) for the momentum �k with
−i �∇�r1 and −i �∇�r2 respectively. Finally the bipolaron wave function reads

|ψ �Q〉 = 1√
V

ei �Q· �Rc exp

(∑
�q
(f�q(�r)ei�q· �Rca�q − f ∗

�q (�r)e−i�q· �Rca
†
�q)

)
ϕ(�r)|0〉 (AI.6)

where ϕ(�r) is the Fourier transform of ϕ(k) and represents the relative wave function of the
two particles.

Appendix II

In this appendix we derive the expression for the energy (24). First of all we note that in
equation (4) there are terms of the type

∫
d�r ϕ(r)F (�r + �Rn), where F(�r + �Rn) is

F(�r + �Rn) = ϕ(�r + �Rn)e
−σ1n(�r).
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We expand F(�r + �Rn) to the second order in �Rn:∫
d�r ϕ(r)F (�r + �Rn) ≈

∫
d�r ϕ(r)F (�r, �r) +

∫
d�r ϕ(r)( �Rn · �∇n)F (�r, �r)

+
1

2

∫
d�r ϕ(r)( �Rn · �∇n)

2F(�r, �r)

where the �∇n specify the derivation with respect to terms in which �r + �Rn appears. The
zero-order term is then∫

d�r ϕ(r)2Ẽ

( �Q
2
, �r

)
(AII.1)

where we define

Ẽ

( �Q
2
, �r

)
=

∑
n �=0

Enei �Q· �Rn/2e−δn(�r)

with

δn(�r) =
∑

�q
|f�q(�r)|2(1 − e−i�q· �Rn/2).

The first-order term is supplied by

−
[

1

i

∑
�q

∫
d�r ∇ϕ2 · �∇

{
�E

( �Q
2
, �q, r

)}
− c.c.

]
|f�q(�r)|2 (AII.2)

where

�E

( �Q
2
, �q, r

)
= Ẽ

( �Q
2

− �q, �r
)

− Ẽ

( �Q
2
, �r

)
.

Finally the second-order term is calculated supposing a slow variation of �E( �Q/2, �q, �r)
with respect to r, yielding

a2

2

∫
d�r Ẽ

( �Q
2
, �r

)
ϕ(r)∇2ϕ(r) +

a2

4

∑
�q

∫
d�r �E

( �Q
2
, �q, �r

)
|f�q(�r)|2 ∇2ϕ2

+
a2

2

∫
d�r Ẽ

( �Q
2
, �r

)
f ∗

�q (�r)( �∇ϕ2 · �∇f�q(�r) + ϕ2 ∇2f�q(�r))

− a2

2

∑
�q

∫
d�r �E

( �Q
2
, �q, r

)
|f�q(�r)|2(( �∇ϕ)2 + ϕ(r)∇2ϕ(r))

+
a2

2

∑
�q

∫
d�r �E

( �Q
2
, �q, �r

)
f ∗

�q (�r)( �∇ϕ2 · �∇f�q(�r) + ϕ2 ∇2f�q(�r)). (AII.3)
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